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Abstract

We will discuss similarities of L-functions between in the number the-
ory and in the geometry. In particular the Hesse-Weil congruent zeta
function of a smooth curve defined over a finite field will be compared to
the zeta function associated to a disrete dynamical system. Moreover a
geometric analog of the Birch and Swinnerton-Dyre conjecture and of the
Iwasawa Main Conjecture will be discussed. 1

1 Introduction

About 40 years ago Mazur pointed out an analogy between the number theory
and topology of threefolds. In particular he noticed that a similarity between the
Iwasawa invariant and the Alexander polynomial which is the most well-known
object in knot theory [15]. Recently such similarity between number theory and
topology of threefolds has been recognized by many mathematicians.

The Iwasawa invariant appears in the Iwasawa theory which gives a deep
insight into various L-functions from an arithmetic point of view. He has con-
jectured that his invariant should be the main part of a p-adic zeta function
and his conjecture is referred as the Iwasawa main conjecture. It is sometimes
compared with the Weil conjecture for a smooth projective curve over a finite
field. In fact it was one of Iwasawa’s motivation to develop his theory [10].
Because of similarity mentioned before it is natural to consider a corresponding
model in geometry. An investigation of such a model was initiated by Artin
and Mazur[2] and, following thier idea, Deninger[7] and Fried[8] have studied a
zeta function associated to a dynamical system on a topological manifold with
a foliation.

On the other hand Morishita has observed a certain analogies between primes
and knots from Galois thoretic point of view. In fact, based on an analogy of
the structure of a link group and a certain maximal pro l-Galois group, he
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has obtained invariants of a number field, which corresponds to the Alexander
module and the Milnor invariants[19]. He has continued to pursue his line
and has investigated the connection between his invariant and Massey product
in Galois cohomology following link theory [20]. Nowadays a theory which
study these analogies is called arithmetic topology and is also developped by
Reznikov and Kapranov and thier collaborators [22][1]. In this note, following
these philosophy, we will discuss an analogue of the Birch and Swinnerton-Dyer
conjecture or the Iwasawa conjecture in low dimensional hyperbolic geometry.

The present paper is based on the lecture which I have given at Stekulov
Institute at September 2007. The author wish to express deep appreciation to
Professor A. Sergeev, Professor O. Sheinman and members of the institute for
their kindness and hospitality. He also wants to express thanks to the attendents
for thier stimulating questions.

2 Arithmetic geometry over a finite field and its
geometric model

Everyone should know that the fundamental group of a circle S1 is isomorphic
to Z and that its universal covering is isomorphic to R. On the other hand let
Fq be a finite field of characteristic p. Then its étale fundamental which is the
absolute Galois group Gal(F̄q/Fq) by definition is isomorphic to the profinite
completion Ẑ of Z:

Ẑ = lim
←
Z/(f).

It is topologically generated by the Frobenius automorphism φq. Thus we may
consider S1 and R correspond to SpecFq and SpecF̄q, respectively and such an
observation will play a key role in this section. In the following we will fix a
generator g of π1(S1) ' Z, which is a geometric substitute for φp.

2.1 A smooth curve over a finite field seems like to a map-
ping torus of a Riemann surface

In this section we will discuss a dymanical system on a mapping torus which is
a geometric analogue of a Frobenius in number theory. Although there are more
appropriate model due to Deninger[7] or Fried[8], we will treat the simplest one.

Let Σ be a smooth projective curve defined over Fq and Σ its base extension
to F̄q. We may write such objects in the diagram:

Σ
ρ→ Σ

↓ ↓
SpecF̄q → SpecFq.

(2.1)
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By the previous observation a corresponding geometric situation should be a
Cartesian diagram:

M
τ→ M

↓ ↓ f
R → S1.

Here M is a compact Riemannian manifold and f is a smooth fibration. Since
R is contractible M̄ is isomorphic to a smooth compact manifold N with R. By
the fact

Hi
et(Σ, Ql) = 0, i ≥ 3

for l 6= p, the dimension of corresponding N should be 2. Thus for a geometric
model of Σ it is natural to take M a mapping torus of an automorphism φ of
N . Here the mapping torus of (N, φ) is defined as

N × [0, 1]/ ∼,

where the relation is given by

(x, 0) ∼ (φ(x), 1), x ∈ N.

Since (1) is Cartesian, φq induces an automorphism of Σ̄, which will be denoted
by the same letter. Then it is natural to regard φ its geometric substitute. Now
we have obtained the following correspondence:

(Σ̄, Σ, φp) ⇐⇒ (N, M, φ).

Such a construction will be generalized to a local system. Let L be an l-adic
local system (i.e. an l-adic flat vector bundle) on Σ. By Deligne it is known
that to give such an object is equivalent to give a pair (L̄, φL), where L̄ is an
l-adic local system on Σ̄ and φL is its automorphism. Thus the corresponding
geometric object for L should be a pair of a flat vector bundle L on N and its
automorphism φL:

L
φL−→ L

↓ ↓
N

φ−→ N

(2.2)

2.2 A discrete dynamical system and its zeta function

We will review the definition of the Hasse-Weil zeta function. Let Σ(Fqn) be
the set of Fqn -rational points of Σ. Then it has an action of φq and so does

Σ(F̄q) = ∪nΣ(Fqn).

The set of closed points |Σ| is defined to be the orbit space of the action on
Σ(F̄q). For x ∈ Σ(F̄q), the degree of extension of the residue field Fx over Fq

will be denoted by deg x. Then the map

Σ(F̄q)
deg→ Z
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factors through
|Σ| deg→ Z.

Now the Hasse-Weil zeta function is defined to be

Z(Σ, t) =
∏

x∈|Σ|
(1− tdeg x)−1. (2.3)

The Weil conjecture predicts that Z(Σ, t) should be a rational function. We
will explain why this should be true by our geometric model. In order to do
that, let us investigate properties of φq more closely.

By definition Σ(Fqn) is a finite subset of Σ(F̄q) which consists of fixed points
of φn

q . Since φq is purely inseparable, its differential dφq vanishes and in partic-
ular we have

det[1− dφn
q (x)] 6= 0

for any x ∈ Σ(Fqn). Every fixed point of φn
q is isolated and nondegenerate.

We assume that the pair (N, φ) enjoys the same property i.e. fixed points of
φn are isolated and nondegenerate. The set of fixed points of φn will be denoted
by N(φn) and let N(φ∞) be their union. Then φ acts on N(φ∞) and its orbit
space will be denoted by |M |. The degree of x ∈ N(φ∞) is defined to be

deg x = Min{n ≥ 1 |φn(x) = x},
which induces a map

|M | deg−→ Z.

Now our geometric analog of (2.2) is defined to be

ζ(M, t) =
∏

x∈|M |
(1− tdeg x)−1. (2.4)

After $1 of [6], its logarithmic derivative is computed as

t
t

dt
log ζ(M, t) =

∑

x∈|M |

deg x · tdeg x

1− tdeg x

=
∑

x∈|M |

∞∑
n=1

deg x · tn·deg x

=
∞∑

n=1

|N(φn)|tn.

The assumption of (N, φ) and the Lefschetz trace formula shows

|N(φn)| =
∑

i

(−1)iTr[(φ∗)n |Hi(N, Q)],
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and

t
t

dt
log ζ(M, t) =

∑

i

(−1)i
∞∑

n=1

Tr[(φ∗)n |Hi(N, Q)]tn.

Now the formula

t
t

dt
log det(1n −At) = −

∞∑
n=1

TrAn · tn

for an n× n-matrix A implies

t
t

dt
log ζ(M, t) = −

∑

i

(−1)it
t

dt
log det[1n − φ∗t |Hi(N, Q)],

and we finally have

ζ(M, t) =
2∏

i=0

det[1− φ∗t |Hi(N, Q)](−1)i+1
. (2.5)

The RHS is visibly a rational function.

We expect that there should exsist a suitable theory of cohomology and the
Lefschetz trace formula in arithmetic geometry over a finite field. In fact it does
exist. They are nothing but the theory of étale cohomology and the Grotendieck-
Lefschetz trace formula. Thus we can repeat the same computation as above for
Σ (more generally for any smooth projective variety over a finite field) and can
prove the rationality of the Hasse-Weil zeta function. ([6]).

The above construction is generalized to an l-adic local system L on a Zarisiki
open subset Σ0 of Σ. For simplicity we will assume that Σ0 and Σ are equal. Let
ρL be the corresponding representation of étale fundamental group πet

1 (Σ, σ0)
with respect to a geometric base point σ0. Since ρL is unramified everywhere
ρL(φx) is well defined for x ∈ Σ(F̄q). Here φx ∈ πet

1 (Σ, σ0) is a Frobenius
automorphism at x, which is only well defined up to conjugation of an element
of the inertia group at x. Moreover it is easy to see that a polynomial

PL,x(t) = det[1− ρL(φx)tdeg x]

is only determined by the orbit of x and thus we may define the L-function
associated to L to be

L(Σ, L, t) =
∏

x∈|Σ|
PL,x(t)−1.

Next we will discuss its topological model. Let F be a flat vector bundle on
M and ρF the corresponding representation of π1(M, m0). A point x ∈ N(∞)
determines a closed loop in M and connecting it to m0 by a curve c we will
obtain an element γx of π1(M, m0). Then

PF,x(t) = det[1− ρF (φx)tdeg x]
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does not depend on a choice of c and moreover it only depends on the orbit of
x. Thus our geometric model of the L-function is

L(M, F, t) =
∏

x∈|M |
PL,x(t)−1.

Since to give a flat vector bundle over M is equivalant to give a pair of a
flat vector bundle L over N and its automorphism φL as (2.2), we have more
geometric description of PF,x(t). Notice that φdeg x fixes x and φL induces an
automorphism φL,x of Lx. Then it is easy to see that

PF,x(t) = det[1− φL,xtdeg x].

Now using the Lefschetz trace formula for a local system the computation as
before will show

L(M, F, t) =
2∏

i=0

det[1− φ∗Lt |Hi(N, L)](−1)i+1
.

If we use the Grothendieck-Lefschetz trace the same argument is still available
for an l-adic local system on Σ and we will obtain

L(Σ, L, t) =
2∏

i=0

det[1− φ∗Lt |Hi
et(Σ̄, L̄)](−1)i+1

. (2.6)

2.3 The Birch and Swinnerton-Dyer conjecture and its
geometric model over a finite field

Let E be an elliptic curve defined over Q and we will fix a prime l. The integral
l-adic Tate module of E is defined to be the inverse limit of ln-torsion of E:

Tl(E) = lim
←

E[ln], E[ln] = Ker[E ln→ E],

and we set
Vl(E) = Tl(E)⊗Zl

Ql.

It is a Gal(Q/Q)-module which is unramified at a prime p other than l which
does not divide the discriminant ∆E of E. Let ρE,l be the representation of
Gal(Q/Q) on Vl(E). Then for such a prime p, the characteristic polynomial of
a Frobenius φp

det[1− ρE,l(φp)t]

is well defined and the L-function of E is defined as

L(E, s) =
∏
p

det[1− ρE,l(φp)p−s]−1,

where p runs through primes not dividing l ·∆E . Then it absolutely converges
for Re s > 3

2 . Wiles has proved that the function

ξE(s) = N
s
2
E (2π)−sΓ(s)L(E, s), NE is the conductor ofE,
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satisfies a functional equation

ξE(s) = ±ξE(2− s),

and that that L(E, s) is entirely continued to the whole plane [29]. We are
mainly interested in a behavior of the L-function at s = 1. By the Mordell-
Weil theorem, the set of rational points E(Q) of E becomes a finitely generated
abelian group and its rank is referred as the Mordell-Weil rank. Now here is a
crude form of the Birch and Swinnerton-Dyer.

Conjecture 2.1. ([4] [5]) The order of L(E, s) at s = 1 should be equal to the
Mordell-Weil rank of E.

In [27] Tate has studied an analog of the conjecture for an elliptic fibration
over a finite field. (In fact more generally he has considered the conjecture for
an abelian fibration.) Let X be a smooth projective surface defined over a finite
field Fq which has a morphism onto a smooth complete curve S whose generic
fibre is an elliptic curve:

X
f→ S. (2.7)

We assume that the moduli of the fibration is non-constant. Moreover for sim-
plicity we also assume that (2.6) is a smooth fibration. (In general we do not
have to assume this.) We set

V = R1f∗Ql,

which is a local system on S and let ρV be the corresponding representation of
an étale fundamental group of S.

Then the L-function of the fibration is defined to be

LX/S(s) = L(S, V, t)|t=q−s

=
∏

x∈|S|
det(1− ρV (φx)q−sdeg x)−1.

Now the assumption of moduli of the fibration and the Poincaré duality imply

H0
et(S, V ) = H2

et(S, V ) = 0.

Therefore by (2.5) we have

L(S, V, t) = det(1− φ∗qt | H1(S, V ))

and
ords=1LX/S(s) = ordt=q−1det(1− φ∗qt | H1(S, V )).

The latter is equal to the multiplicity of q in eigenvalues of φ∗q , which is greater
than or equal to dim[H1(S, V )(1)]Gal(Fq/Fq). Here for an l-adic representation
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W of Gal(Fq/Fq) W (m) is its m-th Tate twist, which is defined as follows. We
set

Zl(1) = lim
←

µln , Ql(1) = Zl(1)⊗Zl
Ql,

and
Ql(−1) = HomQl

(Ql(1), Ql),

where µN is a group of N -th roots of unity. Then for a positive integer m, Ql(m)
and Ql(−m) are defined to be the m-th tensor product of Ql(1) and Ql(−1),
respectively. Now we set

W (m) = W ⊗Ql
Ql(m).

Notice that by definition dim[H1(S, V )(1)]Gal(Fq/Fq) is equal to the dimension
of the eigenspace of φ∗q on H1(S, V ) whose eigenvalue is q.

Let X(S) be the abelian group of the section of the fibration, which is a
finitely generated abelian group by the Mordell-Weil’s theorem for a function
field. Then the cycle map embeds X(S) ⊗Z Ql in a subspace of H1(S, V )(1)

fixed by the absolute Galois group. We will explain it briefly. Since X
f→ S is

an elliptic fibration, in the category of sheaves with respect to an étale topology
on S, there is an exact sequence:

0 → X[ln] → X
ln→ X → 0,

where the ln-th power is taken for fibre direction. This induces injection of
Galois modules

X(S)⊗Z Z/(ln) ↪→ H1(S,X[ln]). (2.8)

If we set
Vl(X/S) = (lim

←
X[ln])⊗Zl

Ql,

(2.8) implies an injection

X(S)⊗Z Ql ↪→ [H1(S, Vl(X/S))]Gal(Fq/Fq).

Since Vl(X/S) is the dual of R1f∗Ql the Weil pairing

Vl(X/S)× Vl(X/S) → Ql(1)

shows
R1f∗Ql(1) ' Vl(X/S),

and thus we have the desired embedding

X(S)⊗Z Ql ↪→ [H1(S, R1f∗Ql(1))]Gal(Fq/Fq)

= [H1(S, V )(1)]Gal(Fq/Fq).

Now Tate conjectured the following.
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Conjecture 2.2. The order of LX/S(s) at s = 1 should be equal to the rank of
X(S).

Remark 2.1. He has also conjectured that the leading term of the L-function
should be interpreted in terms of arithmetic invariant of a fibration.

The above discussion shows that this is equivalent to that the cycle map

X(S)⊗Z Ql → [H1(S, V )(1)]Gal(Fq/Fq)

is surjective and moreover that multiplicity of 1 in eigenvalues of φ∗q on H1(S, V )(1)
is equal to dim[H1(S, V )(1)]Gal(Fq/Fq). The latter statement implies a certain
semisimplicity of the action of φ∗q . In [11] Kato and Trihan have shown that the
Tate conjecture is true if the l-primary part of the Shafarevic-Tate group of a
fibration is finite. (Notice that in their theorem a fibration may have singular
fibers). Moreover they have computed the leading term of the L-function, which
implies the original Tate conjecture.

2.4 An analog of the Birch and Swinnerton-Dyer conjec-
ture over C

In each model due to Tate, Deninger[7] and Fried[8] a discrete dynamical sys-
tem is used in a very efficient way. But since the Birch and Swinnerton-Dyer
conjecture is formulated over Q there does not exist such a system a priori.
Therefore there arises a natural question.

Is it possible to formulate a geometric analog of the conjecture without any
discrete dynamical system?

This was our motivation. Now we will formulate a geomeric analog of the
Birch and Swinnerton-Dyer conjecture over C. Although we do not have any
discrete dynamical sytem, replacing étale cohomology groups in Tate’s model
by spaces of L2-sections of a certain vector bundles over a Zariski open subset
of a compact Riemann surface, the heat kernel of a Laplacian will play the same
role as Frobenius. For the proof of the statements see [24].

Let X be a smooth projective variety of dimension d + 1. Suppose there is
a map from X to a smooth projective curve S

X
f−→ S

with a section σ. Suppose that X admits a structure of a commutative group
scheme over S with the identity section σ whose generic fibre is an abelian
variety. Moreover we assume the fibration satisfies all of the following conditions.

Condition 2.1. 1. Let Σ be a subset of S where the fibration degenerates.
Then it has a semistable reduction at each point of Σ.
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2. We set
S0 = S \ Σ.

Then the Euler-Poincaré characteristic of S0 is negative. (Thus S0 is a
quotient of the Poicaré upper halfplane H2 by a discrete subgroup Γ of
SL2(R). )

3. −12 is not contained in Γ.

4. Let fix a base point x0 of S0 and we will identify π1(S0, x0) and Γ. Let
ρX be the monodromy representation:

Γ ' π1(S0, x0)
ρX−→ Aut(V ), V = H1(f−1(x0), R).

Then there is a positive constants α and C such that

|TrρX(γ)| ≤ Ceαl(γ)

is satisfied for any hyperbolic element γ of Γ.

5. The moduli of the fibration is not a constant. Namely it satisfies

H0(S, R1f∗OX) = 0.

By the monodromy theorem [21], (1) implies Γ has no elliptic element. The
(3) and (4) are not so restrictive. For example, if neccessary taking a subgroup
of finite index, (3) will be always satisfied. Also it is easy to see (4) is satisfied if
the monodromy representation is a restriction of a homomorphism of algebraic
groups from SL2(R) to GL2d(R) to Γ.

In order to define the Selberg and the Ruelle L functions of the fibration, we
will fix notation.

Let Γ∗conj be the set of non trivial conjugacy classes of Γ and let Γ∗h,conj be its
subset consisting of hyperbolic conjugacy classes. There is a natural bijection
between Γ∗h,conj and the set of non trivial closed geodesics and we will identify
them. Then γ ∈ Γ∗h,conj is uniquely written as

γ = γ
µ(γ)
0 ,

where γ0 is a prime closed geodesic( i.e. not a positive multiple of an another
one) and µ(γ) is a positive integer, which will be referred as a multiplicity. The
subset of Γ∗h,conj consisiting of prime closed geodesics will be denoted by Γ∗pr,conj .
The length l(γ) of γ ∈ Γ∗h,conj is defined by the length of the corresponding closed
geodesic. Finally we set

D(γ) = e
1
2 l(γ) − e−

1
2 l(γ).

Now the Selberg L function LS,f (s) is defined by

LS,f (s) = exp(−
∑

γ∈Γ∗h,conj

2TrρX(γ)
D(γ)µ(γ)

e−sl(γ)).

10



We also define the Ruelle L function LR,f (s) to be

LR,f (s) =
LS,f (s− 1

2 )
LS,f (s + 1

2 )
.

It is easy to see that LS,f (s) absolutely convergents on {s ∈ C | Re s > 1
2 + α}.

One can prove that it is meromorphically continued to the whole plane and
that LS,f (s) (resp. LR,f (s)) is regular at s = 0 (resp. s = 1

2 ). Our interest is
ords=0LS,f (s) and ords= 1

2
LR,f (s).

Theorem 2.1. Let X(S) be the Mordell-Weil group of the fibration. Then we
have

2 dimQ X(S)⊗Q ≤ ords=0LS,f (s) = ords= 1
2
LR,f (s).

Moreover if H2(X, OX) = 0, they are equal.

A simple computation shows that the Ruelle L function has an Euler product:

LR,f (s) = c0

∏

γ0∈Γ∗pr,conj

(det[12d − ρX(γ0)e−sl(γ0)])2,

where c0 is a certain constant and 12d be the 2d × 2d identity matrix. Now
Theorem 3.1 implies the following.

Theorem 2.2. (A geometric analogue of the BSD conjecture over C) The Euler
product

LX/S(s) =
∏

γ0∈Γ∗pr,conj

det[12d − ρX(γ0)e−sl(γ0)]2

has a zero at s = 1
2 whose order is greater than or equal to 2 dimQ X(S) ⊗Q.

Moreover if H2(X, OX) = 0, then they are equal.

The condition H2(X, OX) = 0 corresponds to the finiteness of l-primary part
of the Brauer group in the Tate conjecture. In fact let us define the topological
Brauer group Br(X)top of X by

Br(X)top = H2(X, O×X),

where the cohomology is taken with respect to the classical topology. Then
using the exponential sequaence, we see that Br(X)top is finitely generated if
and only if H2(X, OX) vanishes.

3 The Iwasawa Main Conjecture and its geo-
metric analog

In this chapter we will pursue an analogy between number theory and topology
of threefolds. In particular our interest will be focused on similarity of knot
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theory and the Iwsawasa theory.

Let us briefly review the definition of the Alexander polynomial of a knot[18].
(See $3.1 for more complete treatment.) Let K be a knot (i.e. an embedded
circle) in the standard 3-dimensional sphere S3 and X its complement. Then
the Alexander duality shows H1(X, Z) is isomorphic to the infinite cyclic group
Z. Let X∞ be an infinite cyclic covering of X determined by geometric Galois
theory and g a generator of Gal(X∞/X). Then we will see that H1(X∞, Q)
is a finite dimensional vector space over Q on which g acts. The Alexander
polynomial is defined to be its characteristic polynomial.

The Iwasawa module and the Iwasawa invariant are arithmetic objects which
correspond to H1(X∞, Q) and the Alexander polynomial, respectively. Before
going into furthur we will explain why the integer ring of a number field corre-
sponds to a topological threefold.

Let D be the ring of integers of a number field F and Z = Spec(D). Based
on the Artin-Verdier duality Mazur has computed étale cohomology groups of
Z with a finite coefficient([14], pp. 539). In particular he has shown that, if F
is totally imaginary,

Hq(Z, Z/(n)) =





Z/(n) if q = 0
(Pic(Z)⊗Z Z/(n))∗ if q = 1
(ExtZ(Z/(n), Gm))∗ if q = 2

µn(D) if q = 3
0 if q > 3

Here ∗ is the Pontryagin dual and µn(D) is the set of n-th roots of unity con-
tained in D. Thus Z has the same property as a topological threefold from a
viewpoint of cohomology. Moreover his computation shows that an ideal class
group will play the same role as the first cohomology group. Moreover since by
the theorem of Minkowski Q does not possesses a non-trivial finite extension
which is unramified everywhere, we may consider Spec(Z) corresponds to S3.
Now remember that we have explained a prime corresponds to a circle. Thus
an arithmetic substitute of a knot complement X should be SpecZ[ 1p ], where
p is a prime. Let ζN be a primitive N -th root of unity. Then SpecZ[ζpn ] is
an unramified (Z/(pn))∗-extension of SpecZ[ 1p ] and it is natural to think about
that its ideal class group should play the same role as H1(X∞, Q). Now we will
explain this idea more precisely.

3.1 The Alexander invariant

In this section we will discuss the Alexander invariant, which is a generalization
of the Alexander polynomial to a twisted case. We will see that it plays the
same role as RHS of (2.5). Although Milnor has used homology groups, we
rather prefer to work on cohomologies.
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Let Λ∞ = C[t, t−1] be a Laurent polynomial ring of complex coefficients.
The following lemma is easy to see.

Lemma 3.1. Let f and g be elements of Λ∞ such that

f = ug,

where u is a unit. Then their order at t = 1 are equal:

ordt=1f = ordt=1g.

Let (C·, ∂·) be a bounded complex of free Λ∞-modules of finite rank whose
homology groups are torsion Λ∞-modules. Suppose that it is given a base ci

for each Ci. Such a complex will refered as a based complex. We set

Ceven = ⊕i≡0(2)Ci, Codd = ⊕i≡1(2)Ci,

which are free Λ∞-modules of finite rank with basis ceven = ⊕i≡0(2)ci and
codd = ⊕i≡1(2)ci respectively. Choose a base beven of a Λ∞-submodule Beven of
Ceven (necessary free) which is the image of the differential and column vectors
xodd of Codd so that

∂xodd = beven.

Similarly we take bodd and xeven satisfying

∂xeven = bodd.

Then xeven and beven are expressed by a linear combination of ceven:

xeven = Xevenceven, beven = Yevenceven,

and we obtain a square matrix
(

Xeven

Yeven

)
.

Similarly equations

xodd = Xoddcodd, bodd = Yoddcodd

yield a square matrix (
Xodd

Yodd

)
.

Now the Milnor-Reidemeister torsion τΛ∞(C·, c·) of the based complex {C·, c·}
is defined as

τΛ∞(C·, c·) = ±
det

(
Xeven

Yeven

)

det
(

Xodd

Yodd

) (3.1)
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It is known τΛ∞(C·, c·) is independent of a choice of b·.

Since H·(C·) are torsion Λ∞-modules, they are finite dimensional complex
vector spaces. Let τi∗ be the action of t on Hi(C·). Then an Alexander invariant
is defined to be the alternating product of their characteristic polynomials:

AC·(t) =
∏

i

det[t− τi∗](−1)i

. (3.2)

Then Assertion 7 of [18] shows fractional ideals generated by τΛ∞(C·, c·) and
AC·(t) are equal:

(τΛ∞(C·, c·)) = (AC·(t)).

In particular Lemma 3.1 implies

ordt=1τΛ∞(C·, c·) = ordt=1AC·(t), (3.3)

and we know
τΛ∞(C·, c·) = δ · tkAC·(t),

where δ is a non-zero complex number and k is an integer. δ will be referred as
the difference of the Alexander invariant and the Milnor-Reidemeister torsion.

Let {C·, ∂} be a bounded complex of a finite dimensional vector spaces over
C. Given basis ci and hi for each Ci and Hi(C·) respectively, the Milnor-
Reidemeister torsion τC(C·, c·) is also defined ([17]). Such a complex will be
referred as a based complex again. By definition, if the complex is acyclic, it coin-
cides with (3.1). Let (C·, c·) be a based bounded complex over Λ∞ whose homol-
ogy groups are torsion Λ∞-modules. Suppose its annihilator AnnΛ∞(Hi(C·))
does not contain t− 1 for each i. Then

(C·, ∂) = (C·, c·)⊗Λ∞ Λ∞/(t− 1)

is a based acyclic complex over C with a preferred base c· which is the reduction
of c· modulo (t− 1). This observation shows the following proposition.

Proposition 3.1. Let (C·, c·) be a based bounded complex over Λ∞ whose ho-
mology groups are torsion Λ∞-modules. Suppose the annihilator AnnΛ∞(Hi(C·))
does not contain t− 1 for each i. Then we have

τΛ∞(C·, c·)|t=1 = τC(C·, c·)

For a later purpose we will consider duals.

Let {C ·, d} be the dual complex of {C·, ∂}:
(C ·, d) = HomΛ∞((C·, ∂), Λ∞).

By the universal coefficient theorem we have

Hq(C ·, d) = Ext1Λ∞(Hq−1(C·, ∂), Λ∞)

14



and the cohomology groups are torsion Λ∞-modules. Moreover the character-
istic polynomial of Hq(C ·, d) is equal to one of Hq−1(C·, ∂). Thus if we define
the Alexander invariant AC·(t) of {C ·, d} by the same way as (3.2), we have

AC·(t) = AC·(t)
−1. (3.4)

Let us apply the theory to a threefold. The proofs of theorems will be found
in [23].

In general let X be a connected finite CW-complex and {ci,α}α its i-dimensional
cells. We will fix its base point x0 and let Γ be the fundamental group of X.
Let ρ be a unitary representation of finite rank and Vρ its representation space.
Suppose that there is a surjective homomorphism

Γ ε→ Z,

and let X∞ be the infinite cyclic covering of X which corresponds to Ker ε by
the Galois theory. Finally let X̃ be the universal covering of X.

The chain complex (C·(X̃), ∂) is a complex of free C[Γ]-module of finite rank.
We take a lift of ci = {ci,α}α as a base of Ci(X̃), which will be also denoted
by the same character. Note that such a choice of base has an ambiguity of the
action of Γ.

Following [12] consider a complex over C:

Ci(X, ρ) = Ci(X̃)⊗C[Γ] Vρ.

On the other hand, restricting ρ to Ker ε, we will make a chain complex

C·(X∞, ρ) = C·(X̃)⊗C[Kerε] Vρ,

which has the following description. Let us consider C[Z]⊗C Vρ as Γ-module by

γ(p⊗ v) = p · tε(γ) ⊗ ρ(γ) · v, p ∈ C[Z], v ∈ Vρ.

Then C·(X∞, ρ) is isomorphic to a complex ([12] Theorem 2.1):

C·(X, Vρ[Z]) = C·(X̃)⊗C[Γ] (C[Z]⊗C Vρ).

and we know C·(X∞, ρ) is a bounded complex of free Λ∞-modules of finite rank.
We will fix a unitary base v = {v1, · · · , vm} of Vρ and make it a based complex
with a preferred base c· ⊗ v = {ci,α ⊗ vj}α,i,j .

In the following we will fix an isomorphism between C[Z] and Λ∞ which
sends the generator 1 of Z to t and will identify them. By the surjection:

Λ∞ → Λ∞/(t− 1) ' C,

15



C·(X∞, ρ) ⊗Λ∞ C is isomorphic to C·(X, ρ). Moreover if we take c· ⊗ v as a
base of the latter, they are isomorphic as based complexes.

Let C ·(X̃) be the cochain complex of X̃:

C ·(X̃) = HomC[Γ](C·(X̃), C[Γ]),

which is a bounded complex of free C[Γ]-module of finite rank. For each i we
will take the dual ci = {ci

α}α of ci = {ci,α}α as a base of Ci(X̃). Thus C ·(X̃)
becomes a based complex with a preferred base c· = {ci}i. Since ρ is a unitary
representation, it is easy to see that the dual complex of C·(X∞, ρ) is isomorphic
to

C ·(X∞, ρ) = C ·(X̃)⊗C[Γ] (Λ∞ ⊗C Vρ),

if we twist its complex structure by the complex conjugation. Also we will make
it a based complex by the base c· ⊗ v = {ci

α ⊗ vj}α,i,j .

Dualizing the exact sequence

0 → C·(X∞, ρ) t−1→ C·(X∞, ρ) → C·(X, ρ) → 0

in the derived category of bounded complex of finitely generated Λ∞-modules,
we will obtain a distinguished triangle:

C ·(X, ρ) → C ·(X∞, ρ) t−1→ C ·(X∞, ρ) → C ·(X, ρ)[1] → . (3.5)

Here we set
C ·(X, ρ) = C ·(X̃, ρ)⊗C[Γ] Vρ.

and for a bounded complex C ·, C ·[n] denotes its shift, which is defined as

Ci[n] = Ci+n.

Note that C ·(X, ρ) is isomorphic to the reduction of C ·(X∞, ρ) modulo (t−1).

Let τ∗ be the action of t on H ·(X∞, ρ). Then (8) induces an exact sequence:

→ Hq(X, ρ) → Hq(X∞, ρ) τ∗−1→ Hq(X∞, ρ) → Hq+1(X, ρ) → . (3.6)

In the following, we will assume that the dimension of X is three and that all
H·(X∞, C) and H·(X∞, ρ) are finite dimensional vector spaces over C. The
arguments of §4 of [18] will show the following theorem.

Theorem 3.1. ([18])

1. For i ≥ 3, Hi(X∞, ρ) vanishes.

2. For 0 ≤ i ≤ 2, Hi(X∞, ρ) is a finite dimensional vector space over C and
there is a perfect pairng:

Hi(X∞, ρ)×H2−i(X∞, ρ) → C.

16



The perfect pairing will be referred as the Milnor duality.

Let Aρ∗(t) and A∗ρ(t) be the Alexander invariants of C·(X∞, ρ) and C ·(X∞, ρ)
respectively. Since the latter complex is the dual of the previous one, (3.4) im-
plies

A∗ρ(t) = Aρ∗(t)−1.

Let τ∗Λ∞(X∞, ρ) be the Milnor-Reidemeister torsion of C ·(X∞, ρ) with respect
to a preferred base c· ⊗ v. Because of an ambiguity of a choice of c· and v, it
is well-defined modulo

{ztn | z ∈ C, |z| = 1, n ∈ Z}.
Let δρ be the absolute value of the difference between A∗ρ(t) and τ∗Λ∞(X∞, ρ).
The previous discussion of the torsion of a complex implies the following theo-
rem.

Theorem 3.2. The order of τ∗Λ∞(X∞, ρ), A∗ρ(t) and Aρ∗(t)−1 at t = 1 are
equal. Let β be the order. Then we have

lim
t→1

|(t− 1)−βτ∗Λ∞(X∞, ρ)| = δρ lim
t→1

|(t− 1)−βA∗ρ(t)|
= δρ lim

t→1
|(t− 1)−βAρ∗(t)−1|.

By Theorem 3.1 we see that the Alexander invariant becomes

A∗ρ(t) =
det[t− τ∗ |H0(X∞, ρ)] · det[t− τ∗ |H2(X∞, ρ)]

det[t− τ∗ |H1(X∞, ρ)]
. (3.7)

Suppose H0(X∞, ρ) vanishes. Then the Milnor duality implies

A∗ρ(t)
−1 = det[t− τ∗ |H1(X∞, ρ)],

which is a generator of the characteristic ideal of H1(X∞, ρ). Thus if we think
X∞ corresponds to the Zp-extension of Q, a similarity between the charΛ(X∞,i)
and the ideal generated by the Alexander invariant is clear.

Let hi(ρ) be the dimension of Hi(X, ρ). Then the standard argument shows
the following theorem.

Theorem 3.3. Suppose H0(X∞, ρ) vanishes. Then we have

ordt=1A
∗
ρ(t) ≤ −h1(ρ),

and the identity holds if the action of τ∗ on H1(X∞, ρ) is semisimple.

Theorem 3.4. Suppose Hi(X, ρ) vanishes for all i. Then we have

|τ∗C(X, ρ)| = δρ|A∗ρ(1)| = δρ

|Aρ∗(1)| .

17



Proof. The exact sequence (3.6) and the assumption implies t − 1 is not
contained in the annihilator of H ·(X∞, ρ). Now the theorem will follow from
Proposition 3.1 and Theorem 3.2.

¤

When X is a mapping torus, we obtain a finer information of the absolute
value of the leading term of the Alexander invariant. A proof of the following
theorem is essentially contained in [7] or [8].

Theorem 3.5. Let f be an automorphism of a connected finite CW-complex of
dimension two S and X its mapping torus. Let ρ be a unitary representation
of the fundamental group of X which satisfies H0(S, ρ) = 0. Suppose that the
surjective homomorphism

Γ ε→ Z

is induced from the structure map

X → S1,

and that the action of f∗ on H1(S, ρ) is semisimple. Then the order of A∗ρ(t)
is −h1(ρ) and

lim
t→1

|(t− 1)h1(ρ)A∗ρ(t)| = |τ∗C(X, ρ)|.

In particular we know that |τ∗C(X, ρ)| is determined by the homotopy class
of f . As before without semisimplicity of f∗, we only have

ordt=1A
∗
ρ(t) ≤ −h1(ρ).

Let X is the complement of a knot K in S3 and ρ a unitary representation
of its fundamental group. Since, by the Alexander duality, H1(X, Z) is isomor-
phic to Z, X admits an infinite cyclic covering X∞. Suppose Hi(X∞, ρ) are
finite dimensional complex vector spaces for all i. Then our twisted Alexander
invariant is essentially the inverse of the twisted Alexander polynomial ∆K,ρ(t)
defined by Kitano [13]. More precisely

Theorem 3.6. Suppose H0(X∞, ρ) vanishes. Then we have

ordt=1∆K,ρ(t) = −ordt=1A
∗
ρ(t) ≥ h1(ρ),

and the identity holds if the action of τ∗ on H1(X∞, ρ) is semisimple. Moreover
suppose Hi(X, ρ) vanishes for all i. Then

|τ∗C(X, ρ)| = 1
|∆K,ρ(1)| .
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3.2 The Iwasawa module and the Iwasawa invariant

We will explain arithmetic substitute for the Alezander inavariant, the Iwasawa
module and the Iwasawa invariant. This is also an object which corresponds to
RHS of (2.6).

We will fix a pn-th root of unity ζpn as

ζpn = exp(
2πi

pn
),

and let µpn be the subgroup of C× generated by ζpn . Since ζp
pn = ζp(n−1) for

any n, the invese limit with respect to the p-th power:

ζp∞ = lim
←

ζpn ∈ lim
←

µpn .

is defined.

There is a canonical decomposition of Galois group:

Gal(Q(ζpn)/Q) ' Gal(Q(ζp)/Q)×Gal(Qn/Q),

where Qn is a finite abelian extension of Q. In the decomposition, the former
and the latter are isomorphic to (Z/(p))× and the kernel of the mod p reduction
map:

Γn = Ker[(Z/(pn))× → (Z/(p))×] ' Z/(pn−1),

respectively. Taking the inverse limit with respect to n, we have an infinite
extension Q∞ of Q such that

Gal(Q∞/Q) = lim
←

Γn
κ' (1 + pZp)×

log' Zp.

Here the cyclotomic character κ is defined as

γ(ζp∞) = ζ
κ(γ)
p∞ , γ ∈ Gal(Q∞/Q).

Then a topological ring

Λ = Zp[[Gal(Q∞/Q)]] = lim
←
Zp[Γn],

is referred as the Iwasawa algebra. Choosing a topological generator γ0 of
Gal(Q∞/Q) (e.g. κ(γ0) = 1 + p), Λ is isomorphic to a formal power series
ring Zp[[t]]. Thus we have a isomorphism

Zp[[Gal(Q(ζ∞)/Q)]] ' Zp[Gal(Q(ζp)/Q)]⊗Zp
Λ

' Zp[Gal(Q(ζp)/Q)]⊗Zp
Zp[[t]],

where Q(ζp∞) is the union of {Q(ζpn)}n.

19



Let An be the p-primary part of the ideal class group of Q(ζpn). Then the
the Iwasawa module is defined to be

X∞ = lim
←

An.

Here the inverse limit is taken with respect to the norm map. Since Gal(Q(ζpn)/Q)
acts on An, X∞ becomes a Zp[[Gal(Q(ζp∞)/Q)]]-module. For an integer i ∈
Z/(p− 1), let X∞,i be its ωi-component:

X∞,i = X∞ ⊗Zp[Gal(Q(ζp)/Q)] Zp(ωi).

Here Zp(ωi) is isomorphic to Zp as an abstract module but has a Gal(Q(ζp)/Q)-
action by the character ωi. It is known X∞,i is a finitely generated torsion
Λ-module and let charΛ(X∞,i) be its characteristic ideal. Its generator will be
referred as the Iwasawa invariant.

3.3 p-adic zeta function and the Iwasawa Main Conjecture

In the previous section we have explained an object in a p-adic world which
plays the same role as RHS of (2.5) or (2.6). In this section we will explain the
Iwasawa main conjecture, which predicts that we should have the same equation
as them even in a p-adic setting. Intuitively an object which sits in LHS should
be a Dirichlet L-function. But it lives in the complex world we have to replace
it by a p-adic analytic function, which is nothing but a p-adic L-function due
to Kubota and Leopoldt. For simplicity we assume p is an odd prime.

Let χ be a Dirichlet character of conductor fχ. It is known special values of
the Dirichlet L-function

L(s, χ) =
∞∑

n=1

χ(n)n−s

at nonpositive integers are given by

L(1− n, χ) = −Bn,χ

n
, 1 ≤ n ∈ Z. (3.8)

Here Bn,χ is a generalized Bernoulli number defined by

fχ∑
a=1

χ(a)TeaT

efχT − 1
=

∞∑
n=0

Bn,χ
Tn

n!
.

By definition the Kubota-Leopoldt L-function is a p-adic analytic function which
interpolates special values of Dirichlet’s L-function. More precisely let us fix a
completion of the algebraic closure of Qp, which will be denoted by Cp. Let | · |p
be a p-adic norm on Cp normalized as

|p|p = p−1.
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Fact 3.1. For a non-trivial Dirichlet character χ (resp. the trivial character
1), there is the unique analytic function Lp(s, χ) (resp. meromorphic function
Lp(s, 1)) on a domain

D = {s ∈ Cp | |s|p < p−
p−2
p−1 },

which satisfies

Lp(1− n, χ) = −(1− χω−n(p)pn−1)
Bn,χω−n

n
, 1 ≤ n ∈ Z, (3.9)

where ω is the Teichmüller character. Moreover Lp(s, 1) is analytic outside
s = 1 and has a simple pole there whose residue is 1− p−1.

Let j be an integer such that j ≡ n(mod p − 1), 0 ≤ j < p − 1. Then
combining (2.1) and (2.2) we obtain the following identity of special values of
these two functions:

Lp(1− n, χ) = (1− χω−j(p)pn−1)L(1− n, χω−j), (1 ≤ n ∈ Z).

Thus we may consider Lp(s, χ) as a p-adic analog of L(s, χ). Moreover it is
known that, for an even integer such that ωi 6= 1, there is f(t, ωi) ∈ Zp[[t]],
which is called the Iwasawa power series, satisfying

f((1 + p)s − 1, ωi) = Lp(s, ωi), s ∈ Zp. (3.10)

Let γ0 be a topological generator of Gal(Q(ζp∞)/Q) so that

κ(γ0) = 1 + p,

and ϕ an isomorphism

Λ = Zp[[Γ∞]]
ϕ' Zp[[t]], ϕ(γ0) = 1 + t.

By these identification a character κs (s ∈ Zp) induces a homomorphism of
algebra

Zp[[t]]
κs

→ Zp

which is
κs(t) = κs(γ0)− 1 = (1 + p)s − 1.

In particular, by (2.3), we obtain

κs(f(t, ωi)) = f((1 + p)s − 1, ωi) = Lp(s, ωi).

for an even integer i such that ωi is nontrivial. Now we formulate the Iwasawa
Main Conjecture.

Conjecture 3.1. Let i be an odd integer such that i 6= 1 (mod p− 1). Then the
characteristic ideal charΛ(X∞,i) should be generated by f(t, ω1−i).

The conjecture is first proved by Mazur and Wiles([16]). Today there is a
much simpler proof which uses Kolyvagin’s Euler system (e.g. [28] Chapter 15).
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3.4 The Ruelle-Selberg L-function

In this section we will introduce a Ruelle-Selberg L-function which plays the
same role as the p-adic function in the Iwasawa Main Conjecture.

Let X be a hyperbolic threefold of finite volume, which is a quotient of
the Poincaré upper half space H3 by a torsion free discrete subgroup Γg of
PSL2(C). Since there is a natural bijection between the set of closed geodesics
and one of hyperbolic conjugacy classes Γg,conj , we will identify them. Using this
identification, the length l(γ) of γ ∈ Γg,conj is defined as one of the corresponding
closed geodesic.

Let ρ be a unitary representation of rank r. Then a Ruelle-Selberg L-function
is formally defined to be

Rρ(z) =
∏
γ

det[1− ρ(γ)e−zl(γ)],

where γ runs over prime closed geodesics, i.e. not a positive multiple of another
one. It is known Rρ(z) absolutely convergents if Re z is sufficiently large. We
will study it separately according to whether X is compact or noncompact.

Suppose X is compact. The following theorem is a special case of [9]Theorem
3.

Fact 3.2. The Ruelle-Selberg L-function is meromorphically continued to the
whole plane and its order at z = 0 is

e = 4h0(ρ)− 2h1(ρ).

Moreover we have
lim
z→0

|z−eRρ(z)| = |τ∗C(X, ρ)|2.

Although Fried has shown his results for an orthogonal representation, his
proof is still valid for a unitary case.

Now we want to generalize Fried’s theorem to a noncompact case. By a
technical reason (which should be overcome), we assume that r = 1 (i.e. ρ is a
unitary character) and that X has only one cusp. Let Γ∞ be the fundamental
group at the cusp and ρ|Γ∞ the restriction. Then we have proved the following
theorem [25].

Theorem 3.7. The Ruelle-Selberg L-function is meromorphically continued to
the whole plane. Suppose ρ|Γ∞ is trivial. Then we have

ordz=0Rρ(z) = 2(2h0(ρ) + 1− h1(ρ)).

On the contrary if ρ|Γ∞ is nontrivial,

ordz=0Rρ(z) = −2h1(ρ).
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As for a special value, we have shown the following result [26].

Theorem 3.8. Suppose that ρ|Γ∞ is nontrivial and that h1(ρ) vanishes. Then

|Rρ(0)| = |τ∗C(X, ρ)|2.

These theorems are proved by a computation based on the Selberg trace
formula. In the course of the proof, we have also obtained an analogue of the
Riemann hypothesis.

Theorem 3.9. ([25]) Suppose that ρ|Γ∞ is nontrivial. Zeros and poles of Rρ(z)
is, except for finitely many of them, are located on lines:

{s ∈ C |Re s = −1, 0, 1}.

If ρ|Γ∞ is trivial, there are another poles or zeros which are derived from a scat-
tering term. These correspond to trivial zeros of the Riemann’s zeta function.

3.5 A geometric analog of the Iwasawa Main Conjecture

Let X be a hyperbolic threefold of finite volume which admits an infinite cyclic
covering X∞. Let g be a generator of Gal(X∞/X). Let ρ be a unitary repre-
sentation of the fundamental group of X and we will always assume that the
pair (X∞, ρ) satisfies the assumption of the Milnor duality.

Since H0(X, ρ) is a subspace of H0(X∞, ρ), Theorem 3.3, Theorem 3.4,
Theorem 3.5 and Fact 3.2 imply the following theorem.

Theorem 3.10. Suppose that X is compact and that H0(X∞, ρ) vanishes.
Then

−2h1(ρ) = ordz=0Rρ(z) ≥ 2ordt=1A
∗
ρ(t),

and the identity holds if the action of g on H1(X∞, ρ) is semisimple. If all
Hi(X, ρ) vanish, we have

|Rρ(0)| = δ2
ρ|A∗ρ(1)|2.

Moreover suppose that X is homeomorphic to a mapping torus of an automor-
phism of a CW-complex of dimension two and that the surjective homomorphism
from the fundamental group to Gal(X∞/X) ' Z is induced from the structure
map:

X → S1.

Then if the action of g on H1(X∞, ρ) is semisimple, we have

lim
z→0

|z2h1(ρ)Rρ(z)| = lim
t→1

|(t− 1)h1(ρ)A∗ρ(t)|2 = |τ∗C(X, ρ)|2.

When X is noncompact, Theorem 3.3, Theorem 3.4, Theorem 3.7 and
Theorem 3.8 show the following theorem.
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Theorem 3.11. Suppose X has only one cusp and let ρ be a unitary character
of its fundamental group. Let us assume H0(X∞, ρ) vanishes.

1. If ρ|Γ∞ is nontrivial, we have

−2h1(ρ) = ordz=0Rρ(z) ≥ 2ordt=1A
∗
ρ(t).

Moreover if all Hi(X, ρ) vanish, we have

|Rρ(0)| = δ2
ρ|A∗ρ(1)|2.

2. If ρ|Γ∞ is trivial, we have

−2h1(ρ) = ordz=0Rρ(z) ≥ 2(1 + ordt=1A
∗
ρ(t)).

Moreover if the action of g on H1(X∞, ρ) is semisimple, each inequality above
becomes an identity.

Suppose that H0(X∞, ρ) = 0 and that the action of g on H1(X∞, ρ) is
semisimple. Let us make a change of variables:

z = t− 1.

Then if X is compact, two ideals (Rρ(z)−1) and (A∗ρ(z)−2) of C[[z]] are coincide.
Thus we see that a geometric analog of the Iwasawa Main Conjecture holds for
a unitary representaion of the fundamental group.

Notice that in the original Iwasawa main conjecture the Krull dimension of
Zp[[s]] is two and it is neccessary to care about a p-adic integral structure of the
p-adic zeta function. But in our case the Krull dimension of C[[z]] is one and
we do not have to worry about an integral structure of Rρ. Thus our model is
much simpler and easier than the p-adic one. The reader may wonder the reason
of exceptional zeros of Rρ(z) in Theorem 3.11 (2) but such a phenomenon
also occurs for a p-adic L-function associated to an elliptic curve defined over
Q which has a split multiplicative reduction at p [3]. It is quite surprising that
although p-adic analysis, the arithmetic algebraic geometry over a finite field
and the theory of hyperbolic threefolds are quite different in their feature, L-
functions in each field have common properties.

A main difference between the model of Deninger[7] or Fried[8] and ours is
that in their models there exist a dynamical system which corresponds to the
geometric Frobenius but not in ours. As in the case of a geometric analog of
the Birch and Swinnerton-Dyer conjecture, we will use the heat kernel of the
Laplacian and the Selberg trace formula instead of a geometric Frobenius and
the Grotheidieck-Lefschetz trace formula in the Weil conjecture, respectively.
Since our exceptional zeros are derived from a certain curious phenomenon in
L2 Hodge theory, we expect that exceptional zeros of a p-adic L-function will
be also explained by p-adic Hodge theory.
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