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1 Introduction

Classical (Hamiltonian) mechanics is formulated on symplectic manifolds (M,ω),
on which observables are given by functions f ∈ C∞(M). Systems are quan-
tized by associating a Hilbert space H to M , and an (anti-)self-adjoint operator
f̂ on H to each function f .1

Classical mechanics Quantum mechanics

(M,ω) : a symp. manifold → H : a Hilbert space

f ∈ C∞(M) → f̂ : H → H
(anti-)self-adjoint

We require that

• f 7→ f̂ is linear,

• [f̂ , ĝ] = {̂f, g} for f, g ∈ C∞(M),

where { , } is the Poisson bracket. In other words, f 7→ f̂ gives a Lie algebra
homomorphism from (C∞(M), { , }).

A basic example is the case of symplectic vector space R2n = T ∗Rn with the
standard symplectic form

ω =
1
~

∑
dpi ∧ dqi, (1)

where ~ is the Planck’s constant. In this case, we usually take the space H =
L2(Rn) of L2-functions in q1, . . . qn, on which the positions qi and momenta pj

are quantized by
q̂iφ = −

√
−1qiφ ,

p̂jφ = ~
∂

∂qj
φ

(2)

1In this note we consider anti-self-adjoint operators, because what we construct in the
following are unitary representations.
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for φ ∈ H. Then we have the Heisenberg’s uncertainty principle

[q̂i, p̂j ] =
√
−1~δij =

√
−1{qi, pj}.

This relation implies that qi’s, pj ’s, together with a center R (i.e. constant
functions) generate a Lie algebra heis(R2n):

0 −→
√
−1R −→ heis(R2n) −→ R2n −→ 0,

and (2) gives a representation of heis(R2n). It is known that H = L2(Rn) is a
(unique) irreducible representation of heis(R2n).

There is another description of the irreducible representation of heis(R2n),
which is called the Bargmann-Fock representation. We identify R2n with Cn by
zi = qi +

√
−1pi. Then the representation is given by

H′ =
{

ψ : Cn → C holomorphic
∣∣∣∣ ∫

|ψ(z)|2e−|z|2/2 ≤ ∞
}

with

ẑiψ =
√
−1ziψ,

̂̄ziψ = 2
√
−1~

∂

∂zi
ψ.

The isomorphism H → H′ is given by the Segal-Bargmann transform ([26, 27],
[3, 4])

f(q) 7−→
∫

Rn

A(z, q)f(q)dq,

where

A(z, q) = (2π)−3n/4 exp
(
−1

4

∑
(zi

2 + qi
2) +

1√
2

∑
ziqi

)
.

Geometric quantization is a generalization of these constructions. In geo-
metric quantization, H and H′ are called a real quantization and Kähler quanti-
zation, respectively. Similar equivalences are observed in several examples such
as Abelian varieties and toric varieties. The case of Abelian varieties is under-
stood in the theory of theta functions. Moreover, it is pointed out by A. Tyurin
[31] that the equivalence is regarded as a part of mirror symmetry for Abelian
varieties. On of the aim of this note is to exhibit the equivalences of real and
Kähler quantizations through several examples.

Section 2 is an introduction to geometric quantization from the viewpoint of
the equivalence of real and Kähler quantizations. We see the above mentioned
equivalence for toric varieties, flag manifolds, and Abelian varieties in Section
3. In Section 4, we study this relation from the point of view of projective
embeddings.
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2 Geometric Quantization

2.1 Prequantization

Let (M,ω) be a symplectic manifold. We assume that 1
2π ω represents an integral

cohomology class:
1
2π

[ω] ∈ H2(M, Z).

Then there exists a prequantum bundle (L,∇) → M , i.e. a complex line bundle
with a unitary connection such that

c1(L,∇) =
1
2π

ω,

where c1(L,∇) is the first Chern form of (L,∇). We consider its automorphism
group

G = Aut (L,∇) =


L

F̃−→ L
↓ ↓
M

F−→ M

∣∣∣∣∣∣∣
F̃ is unitary and

preserves ∇

 .

From the definition, F preserves ω = 2πc1(L,∇) for (F̃ , F ) ∈ G.
To see the Lie algebra LieG of G, we first consider the group Symp(M,ω) of

symplectomorphims. Note that the space of vector fields on M is identified with
the space Ω1(M) of 1-forms by ξ 7→ iξω, where iξ is the contraction operator.

Lemma 2.1. Under the above identification,

Lie Symp(M,ω) ∼= {closed 1-forms}.

Proof. This lemma follows from the closedness of ω and the formula

Lξω = iξdω + d(iξω)

for the Lie derivative.

We define the Hamiltonian vector field ξf of f ∈ C∞(M) by

iξf
ω = −df. (3)

From Lemma 2.1, ξf preserves ω. A diffeomorphism F is said to be Hamiltonian
if there exists a 1-parameter family of symplectomorphisms Ft with F0 = idM ,
F1 = F such that d

dtFt = ξft is a Hamiltonian vector field for each t. We denote
the group of Hamiltonian diffeomorphisms by Ham(M,ω). Then, by definition,
its Lie algebra is the space of exact 1-forms:

Lie Ham(M,ω) ∼= dC∞(M).
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Remark 2.2. Recall that the Poisson bracket is given by

{f, g} = ω(ξf , ξg) = ξf (g).

We choose the sign in (3) so that

[ξf , ξg] = ξ{f,g}

holds.

Now we go back to LieG. Note that (F̃ , F ) 7→ F gives a map G →
Symp(M,ω).

Proposition 2.3. LieG ∼= (C∞(M), { , }), and its action on the space Γ(M,L)
of smooth sections of L is given by

s 7−→ f̂s := ∇ξf
s +

√
−1fs (4)

for f ∈ C∞(M).

In fact, G is a central extension

1 −→ S1 −→ G −→ Ham(M,ω) −→ 1

of Ham(M,ω), corresponding to the natural exact sequence

0 −→ R −→ C∞(M) −→ dC∞(M) −→ 0.

Proof. Let gt be a 1-parameter family in G such that g0 = id. Then its infinites-
imal action d

dt

∣∣
t=0

gt has the form ∇ξ +
√
−1f for some ξ ∈ Lie Symp(M,ω)

and f ∈ C∞(M). The proposition follows from

d

dt

∣∣∣∣
t=0

g∗t ∇ =
√
−1(df − iξω).

Hence Γ(M,L) gives a representation of the Lie algebra (C∞(M), { , }).
However this is not our goal, because this space is “too large”. Recall that,
in the case of M = R2n, H = L2(Rn) consists of functions depending only on
the q-variables. In the next subsection, we introduce the notion of polarization
to eliminate a half of the variables.

Remark 2.4. When we replace L with its tensor power Lk, then the symplectic
form ω = 2πc1(L,∇) is replaced by kω = 2πc1(Lk,∇). Comparing this with
(1), 1/k can be regarded as the Planck’s constant ~, and the limit k → ∞ corre-
sponds to the semiclassical limit. This limit plays important roles in algebraic
and symplectic geometry (see [9]).
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2.2 Polarizations

Definition 2.5. A polarization P is an integrable Lagrangian distribution in
the complexified tangent bundle TM ⊗ C, i.e. [P, P ] ⊂ P , rankCP = n, and
ω|P = 0, where ω is extended to TM ⊗ C complex bilinearly.

We define the space of polarized sections by

ΓP (M,L) := {s ∈ Γ(M,L) |∇ξs = 0 for all ξ ∈ P }.

We first check the integrability condition for the equation ∇ξs = 0. Since the
curvature of ∇ coincides with −

√
−1ω, we have

[∇ξ,∇η]s = (∇[ξ,η] −
√
−1ω(ξ, η))s

From the integrability condition for P , we have [ξ, η] ∈ P for ξ, η ∈ P . On the
other hand, the second term of the right hand side vanishes from the Lagrangian
condition.

There are two important classes of polarizations.

Real polarization Let π : M → B be a Lagrangian fibration, namely, its
general fibers are Lagrangian submanifolds.2 Then the complexified relative
tangent bundle

P = TM/B ⊗ C = ker(dπ : TM → TB) ⊗ C

is a polarization. The corresponding vector space consists of sections which are
covariantly constant along the Lagrangian fibers.

Example 2.6 (symplectic vector space). Let M = R2n = T ∗Rn with ω =∑
dpi ∧ dqi. In this case, a trivial bundle with ∇ = d +

√
−1qidpi gives a

prequantum bundle on M . Since the group R2n of translations on M is a
subgroup of Ham(M,ω), it lifts to a subgroup Heis(R2n) of G:

0 −→ S1 −→ G −→ Ham(M,ω) −→ 0
∥ ∪ ∪

0 −→ S1 −→ Heis(R2n) −→ R2n −→ 0.

Heis(R2n) is called the Heisenberg group. Note that the Lie algebra of Heis(R2n)
is heis(R2n) in Section 1.

The natural projection π : T ∗Rn → Rn is a Lagrangian fibration. In this
case, the corresponding polarized sections can be identified with functions de-
pending only on q-variables. Note that the action of R2n preserves the La-
grangian fibration and hence Heis(R2n) acts on the space of polarized sections.
After taking a completion, we obtain the Heisenberg representation L2(Rn).

We need to modify the definition of the real quantization for general cases.
This is discussed in the next subsection.

2We allow Lagrangian fibrations to have degenerate fibers.
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Kähler polarization Assume that (M,ω) is a Kähler manifold. Then the
anti-holomorphic tangent bundle

P = T 0,1M ⊂ TM ⊗ C

gives another polarization: The integrability condition for P is equivalent to
the integrability of the complex structure, and the Lagrangian condition follows
from the fact that ω is a (1, 1)-form. In this case, L is a holomorphic line
bundle since its curvature −

√
−1ω is of type (1,1). Then the polarized condition

becomes ∂s = 0, which means that the space of polarized sections is nothing
but the space of holomorphic sections:

ΓP (M,L) = H0(M,L).

Thanks to results from algebraic geometry, we can see its dimension using
Riemann-Roch theorem, and the dependence of ΓP (M,L) on the complex struc-
tures on M (see [18]).

Example 2.7 (symplectic vector space). We consider the case of symplectic
vector space again. We identify R2n ∼= Cn. Then L is a trivial holomorphic line
bundle with a Hermitian metric e−|z|2/2. The corresponding vector space is the
space of holomorphic sections with finite L2-norms with respect to the Hermitian
metric e−|z|2/2. Since Heis(R2n) preserves the complex structure, we obtain a
representation of the Heisenberg group. This is an irreducible representation
which is called the Bargmann-Fock representation, and isomorphic to the real
quantization L2(Rn) as mentioned in Section 1.

Remark 2.8. Hall [17] proved the equivalence of real and Kähler quantizations
on the cotangent bundles of compact Lie groups.

Remark 2.9. Unfortunately, from the viewpoint of geometric quantization, the
subgroup of G which preserves a polarization is small (may be trivial) in general.
On the other hand, this fact enables us to construct a “good” moduli space of
polarized3 algebraic varieties.

2.3 Bohr-Sommefeld condition

We assume that M is compact and admits a Lagrangian fibration π : M → B.
Then π is locally given by a completely integrable system, and in particular,
general fibers of π are Lagrangian tori (see [10]). In this section, we consider
only the smooth part of the fibration. By definition of a prequantum bundle,
the restriction (L,∇)|π−1(b) of L to each Lagrangian fiber is flat:

c1(L,∇)|π−1(b) = 2πω|π−1(b) = 0.

However, it is not trivial in general, since the fiber has a non-trivial fundamental
group π1(π−1(b)) = Zn. This implies that there is no nontrivial polarized section
for the real polarization P = kerπ. We modify the definition of polarized
sections in the following way.

3in the sense of algebraic geometry
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Definition 2.10. A fiber π−1(b) is called a Bohr-Sommerfeld fiber if the re-
striction (L,∇)|π−1(b) is trivial.

By considering sections supported only on Bohr-Sommerfeld fibers, we have
non-trivial vector spaces. We can introduce the “Planck’s constant” 1/k.

Definition 2.11. A fiber π−1(b) is called a Bohr-Sommerfeld fiber of level k
(or k-BS for short) if the restriction (Lk,∇)|π−1(b) is trivial.

The space of polarized sections is defied by

ΓP (M,Lk) := {s | supp s ⊂ k-BS fibers, ∇ξs = 0, ξ ∈ P }.

We remark that k-BS fibers appear discretely. This is easily seen using action-
angle variables. On a neighborhood of a smooth torus fiber, we can take a
coordinate system (x1, . . . , xn, y1, . . . , yn) satisfying

• ω =
∑

dxi ∧ dyi,

• 0 ≤ xi < 1 are coordinates on the torus fibers, and

• yi’s are coordinates on the base space such that e2π
√
−1yi

gives the holon-
omy of (L,∇) along the loop corresponding to the xi-axis.

Then π−1(y) satisfies the k-BS condition if and only if its action coordinates
yi’s take values in 1

k Z. In particular, we have

dim ΓP (M,Lk) = the number of k-BS fibers

(if degenerate fibers do not contribute badly).

Remark 2.12. Śniatycki [29] gives a cohomological definition for real quanti-
zations and proves the equivalence with the above definition.

3 Examples

3.1 Toric varieties

For simplicity, we consider the case of M = CP1 with the Fubini-Study metric
ω = ωFS and the hyperplane bundle L = O(1). As a Lagrangian fibration, we
consider the moment map

µ : CP1 −→ [0, 1], [z0 : z1] 7−→
|z1|2

|z0|2 + |z1|2

of a natural S1-action, where [z0 : z1] is a homogeneous coordinate on CP1.
Then a fiber µ−1(b) satisfies the k-BS condition if and only if b ∈ 1

k Z∩ [0, 1]. In
particular,

dimΓker dµ(CP1,O(k)) = #
1
k

Z ∩ [0, 1] = k + 1.
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On the other hand, the Kähler quantization H0(CP1,O(k)) has a monomial
basis

zk
0 , kzk−1

0 z1, . . . ,

(
k

i

)
zk−i
0 zi

1, . . . , z
k
1 . (5)

Note that also these monomials are indexed by lattice points in the moment
polytope [0, 1]: (

k

i

)
zk−i
0 zi

1 ←→ i

k
∈ [0, 1] ∩ 1

k
Z.

In particular, two quantization are equivalent (as an S1-representation):

Γker dµ(CP1,O(k)) ∼= H0(CP1,O(k)).

3.2 Flag manifolds

Let M = U(n)/T be a complex flag manifold, where T is a maximal torus
of U(n) consists of diagonal matrices. We fix λ = diag(λ1, . . . , λn) such that
λi ∈ Z and λ1 > · · · > λn. Then λ gives a character T → C∗ and hence defines
a holomorphic line bundle

Lλ = (U(n) × C)/T −→ M = U(n)/T.

Since Lλ is ample, we can take a (unique) U(n)-invariant Kähler form ωλ in the
class c1(Lλ). Then U(n) acts holomorphically on Lλ (i.e. U(n) ⊂ G), and we
have a representation H0(M,Lλ) of U(n).4

Theorem 3.1 (Borel-Weil). Hi(M,Lλ) = 0 for i ̸= 0 and H0(M,Lλ) is an
irreducible representation of U(n) of highest weight λ. Furthermore, every irre-
ducible representation is given in this way.

Next we consider a real quantization. We identify M with the (co)adjoint
orbit Oλ of λ, i.e. the space of Hermitian matrices with fixed eigenvalues
λ1, . . . , λn:

U(n)/T ←→ Oλ, gT ←→ gλg∗.

Then ωλ coincides with the Kostant-Kirillov form under this identification. For
each x ∈ Oλ, we denote its i× i upper-left submatrix by x(i). Since every x(i) is
Hermitian, it has real eigenvalues λ

(i)
1 ≥ · · · ≥ λ

(i)
i . It is easy to see that these

4Since Lk
λ = Lkλ, we restrict ourselves to the case k = 1.

8



eigenvalues satisfy

λ1 λ2 λ3 · · · λn−1 λn

≥ ≥ ≥ ≥ ≥ ≥
λ

(n−1)
1 λ

(n−1)
2 λ

(n−1)
n−1

≥ ≥ ≥
λ

(n−2)
1 λ

(n−2)
n−2

≥ ≥
· · · · · ·

≥ ≥
λ

(1)
1

(6)

By associating the collection
(
λ

(i)
j

)
1≤j≤i≤n−1

of eigenvalues to each x ∈ Oλ,

we obtain a completely integrable system π : M → Rn(n−1)/2. This is called the
Gelfand-Cetlin system. Its image Pλ = π(M) ⊂ Rn(n−1)/2, the Gelfand-Cetlin
polytope, is a polytope consists of points satisfying (6).

Figure 1: The Gelfand-Cetlin polytope for n = 3

Theorem 3.2 (Guillemin-Sternberg [16]). A fiber π−1(b) satisfies the Bohr-
Sommerfeld condition if and only if b ∈ Pλ ∩ Zn(n−1)/2.

It is known that the Kähler quantization H0(M.Lλ) has a basis indexed by
the lattice points PZ = Pλ ∩ Zn(n−1)/2 of Pλ ([13]). For each i = 1, . . . , n − 1,
we identify U(i) with a subgroup of U(n) of the form(

1n−i 0
0 U(i)

)
⊂ U(n).

Then we have an irreducible decomposition H0(M,Lλ) =
⊕

Vµ as a U(n − 1)-
representation, where Vµ is the irreducible representation of U(n− 1) of highest
weight µ = (µ1 ≥ · · · ≥ µn−1). It is known that

• the multiplicity of Vµ is at most 1 for each µ,
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• Vµ is an irreducible component of H0(M,Lλ) if and only if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn

(see, for example, [35]). Repeating this step successively, we obtain an irre-
ducible decomposition

H0(X,Lλ) =
⊕
Λ∈PZ

VΛ, VΛ
∼= C (7)

as a U(1)-representation. We call (7) a Gelfand-Cetlin decomposition. A Gelfand-
Cetlin basis is given by choosing a basis of VΛ for each Λ ∈ PZ. In particular,
we have an isomorphism

Γker dπ(M,Lλ) ∼= H0(M,Lλ)

as a vector space.

Remark 3.3. Note that the U(n)-action on M does not preserve the Gelfand-
Cetlin system, and hence U(n) does not acts on the real quantization Γker dπ(M,Lλ).

3.3 Abelian varieties

Let A = Cn/ΩZn + Zn be an Abelian variety with a Kähler form

ω0 =
√
−1
2

∑
gijdzi ∧ dz̄j = −

∑
dxi ∧ dyi, (8)

where Ω is an n × n symmetric matrix with positive definite imaginary part
ImΩ = (gij)−1, and z = Ωx + y. We take an ample line bundle L of degree 1
defined by

L = (Cn × C)/ ∼ ,

where
(z, ζ) ∼ (z + λ, e2πtλ(Im Ω)−1z+πtλ(Im Ω)−1λζ)

for λ ∈ ΩZn +Zn. Then ω = c1(L, h0) for some Hermitian metric h0 on L (such
h0 is unique up to constant multiples).

Remark 3.4. The choice of L is not essential. In fact, any other principal
polarization can be obtained as a pull-back of L by some translation on A. We
remark that L is symmetric: (−1)∗L ∼= L, where (−1) is the inverse morphism
of A. This property is necessary when we consider the case of Kummer varieties.

Definition 3.5. Let Ak be the subgroup of k-torsion points in A. We define

Gk =


Lk F−→ Lk

↓ ↓
A

τw−→ A

∣∣∣∣∣∣∣
w ∈ Ak,

F is unitary

 ⊂ Gk = Aut (A,Lk),

where τw : z 7→ z + w is the translation by w. Gk is obtained as an central
extension of Ak

1 −→ S1 −→ Gk −→ Ak −→ 0.
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Note that Ak is the maximal subgroup of translations which can be lifted to
isomorphisms of Lk:

τ∗
wLk ∼= Lk ⇐⇒ w ∈ Ak.

Theorem 3.6 ([20] Proposition 3.2). H0(X,Lk) is an irreducible representation
of the Heisenberg group Gk (which is unique up to isomorphisms).

Holomorphic sections of Lk are given by theta functions. Let Tn be an n-
dimensional tours Rn/Zn, and denote the subgroup of k-torsion points in Tn

by

Tn
k =

1
k

Zn/Zn = {bi}i=1,...,kn ⊂ Tn .

Then the collection of

sbi(z) = si(z) = Ck−n
4 exp

(π

2
ktz(ImΩ)z

)
ϑ

[
0

−bi

]
(k−1Ω, z) , i = 1, . . . , kn,

gives an orthonormal basis of H0(A,Lk) with respect to the L2-inner product,
where

ϑ

[
a

b

]
(Ω, z) =

∑
l∈Zn

exp
(
π
√
−1t(l + a)Ω(l + a) + 2π

√
−1t(l + a)(z + b)

)
,

and C is a constant depends only on Ω (and h0).
We next consider a real quantization. Here we take the following Lagrangian

fibration
π : (A, ω0) −→ Tn, Ωx + y 7−→ y.

Proposition 3.7 (Weitsman [33]). A fiber π−1(b) of π satisfies the Bohr-
Sommerfeld condition of level k if and only if b ∈ Tn

k = 1
k Zn/Zn.

For each bi ∈ Tn
k , we take a covariantly constant section σi of (Lk,∇)|π−1(bi)

with ∥σi∥L2 = 1. Then the real quantization is given by

Γker dπ(A, Lk) =
⊕

bi∈T n
k

Cσi.

In particular, we have an isomorphism⊕
bi∈T b

k

Cσi
∼= H0(A,Lk), σi ←→ si. (9)

This isomorphism is realized by using the Bergman kernel. The Bergman kernel
Πk(z, w) is the integral kernel of the orthogonal projection

Πk : L2(A,Lk) −→ H0(A, Lk)

from the space of L2-sections to the space of holomorphic sections. From the
fact that {si} is an orthonormal, the Bergman kernel is given by

Πk(z, w) =
kn∑
i=1

si(z)si(w)∗.
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We extend Πk to the real quantization. Then we have

si =
(

k

π

)−n/4

Πk(σi) =
(

k

π

)−n/4 ∫
π−1(b)

Πk(z, x)σi(x)dx. (10)

This is a special case of the “BPU construction” [6].

Mirror symmetry The isomorphism (9) can be understood also in terms of
mirror symmetry for Abelian varieties. Mathematically, mirror symmetry is a
conjectural duality between complex geometry on a Kähler manifold M and
symplectic geometry on another Kähler manifold W which is called a mirror
partner of M. We regard H0(A,Lk) as an object in the complex side. The
corresponding object in the symplectic side is a Floer homology of Lagrangian
intersections. Roughly speaking, chains of a Floer homology are generated by
intersection points of Lagrangian submanifolds, and the boundary operator is
given by counting holomorphic disks whose boundaries are on the Lagrangian
submanifolds.

According to the SYZ conjecture [30], a mirror partner Â of A is given by
dualizing the torus fibers of π : A → Tn. Since the dual torus parametrizes
flat line bundles on a torus fiber of π, b 7→

[
Lk|π−1(b)

]
determines a Lagrangian

section Sk of the dual torus fibration π̂ : Â → Tn. In particular, the trivial
bundle OA = L0 corresponds to the zero section S0. Then π−1(b) is a k-BS
fiber if and only if b ∈ S0 ∩ Sk, where we identify Tn with S0. The following
theorem is a part of the mirror symmetry for Abelian varieties:

Theorem 3.8 (Polischuk-Zaslow [23], Fukaya [12]). The Floer homology HF (S0, Sk)
of S0 and Sk is given by

HF (S0, Sk) =
⊕

b∈ 1
k Zn/Zn

C[b],

and sb 7→ [b] gives an isomorphism

H0(A,Lk) = Hom (L0, Lk) ∼= HF (S0, Sk).

Remark 3.9. Gross [14, 15] and Tyurin [31] obtained a similar result for K3
surfaces by using mirror symmetry given in terms of the K3 lattice ([8]). In
this case, we can write down explicitly the homology classes of the Lagrangian
sections corresponding to prequantum bundles, and hence can calculate the
number of their intersection points.

Using a similar idea, Andersen proved the following.

Theorem 3.10 (Andersen [1]). Let (M,ω) be a compact Kähler manifold of
complex dimension n, L → M a prequantum bundle. Assume that M admits a
Lagrangian fibration π : M → B with no degenerate fiber. Then

dim H0(M,Lk) = dimΓTM/B
(Lk)

for large k.
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Proof. From the Riemann-Roch theorem and a vanishing theorem, we have

dim H0(M,Lk) =
∫

M

ch(Lk)Â(TM) =
∫

M

exp(kω)Â(TM) .

Since π : M → B has no singular fiber, there exists a Zn-bundle Λ ⊂ T ∗B
(Λ = R1π∗Z) such that the Lagrangian fibration is locally isomorphic to the
natural projection T ∗B/Λ → B (see [10]). We consider the following exact
sequence

0 −→ TM/B −→ TM −→ π∗TB −→ 0.

By using the symplectic form, TM/B can be identified with π∗T ∗B. Since T ∗B
contains a lattice bundle Λ of maximal rank, we have

Â(TM) = Â(TM/B)Â(π∗TB) = π∗(Â(T ∗B)Â(TB)
)

= 1 .

Consequently we have

dimH0(M,Lk) =
∫

M

knωn/n! = kn · vol(M,ω) .

Next we calculate the number of Bohr-Sommerfeld fibers. We define a dual
torus fibration of π : M → B by π̌ : TB/Λ∗ → B, where Λ∗ = Hom(Λ, Z) ⊂ TB
is the dual lattice of Λ. Let Sk : B → TB/Λ∗ be a section given by b 7→
[Lk|π−1(b)]. Then

dimΓTM/B
(Lk) = #(S0(B) ∩ Sk(B)) .

Sk can be written explicitly as follows. Let (x1, . . . , xn, y1, . . . , yn) be the action-
angle coordinate, and take the dual coordinate (v1, . . . , vn) of (y1, . . . , yn). Then
Sk is given by

Sk(x1, . . . , xn) = (x1, . . . , xn, kx1, . . . , kxn) (11)

with respect to this coordinate. This implies that that Sk and S0 intersect
transversely and positively (under a suitable orientation). Therefore the number
of Bohr-Sommerfeld fibers of level k coincides with the intersection number of
Sk and S0. Since α = dv1 ∧ · · · ∧ dvn ∈ Ωn(TB/Λ∗). gives the Poincaré dual of
λ0(B), we have

dim ΓTM/B
(Lk) =

∫
Sk(B)∩S0(B)

1

=
∫

Sk(B)

α =
∫

B

S∗
kα .

By using
S∗

kα = kndx1 ∧ · · · ∧ dxn = knπ∗ω
n/n!,

13



which follows from (11), we obtain

dimΓTM/B
(Lk) = kn

∫
B

π∗ω
n/n!

= kn

∫
M

ωn/n! = kn · vol(M,ω) .

3.4 Moduli of vector bundles

Let M be a moduli space of vector bundles of fixed rank and degree on a
compact Riemann surface. M admits a Kähler structure with a prequantum line
bundle L → M (see [2]). Holomorphic sections of L are called generalized theta
functions. The quantization for (M,L) is related to many areas in mathematics
and mathematical physics.

Moreover, M admits a Lagrangian fibration. Roughly speaking, it is con-
structed in the following way. We decompose the Riemann surface into pairs of
pants. Then, to twist each vector bundle along the boundaries of the compo-
nents defines a torus action on an open dense subset of M, which extends to a
Lagrangian fibration of M.

Theorem 3.11 (Jeffrey-Weitsman [19], A. Tyurin [32]). For M, the real and
Kähler quantization are equivalent.

4 Projective Embeddings and Lagrangian Fibra-
tions

We have seen that real and Kähler quantizations are equivalent in several ex-
amples. In particular, in each compact case, the canonical basis of the real
quantization gives a basis of the Kähler quantization H0(M,Lk) via the iso-
morphism. It is natural to ask to what extent such basis have information of
Lagrangian fibrations. We study the relation through projective embeddings.

Example 4.1 (Toric varieties). Recall that the S1-action on CP1 gives a holo-
morphic automorphism of O(1) (i.e. S1 ⊂ G), and monomials are weight vectors
of the S1-action on the Kähler quantization H0(CP1,O(k)). In particular, the
Lagrangian fibration is recovered from the monomial basis. Let

ιk : CP1 −→ CPk, z 7−→
[
zk
0 : · · · :

(
k

i

)
zk−i
0 zi

1 : · · · : zk
1

]
.

be a projective embedding given by the monomial basis (5), and

µk : CPk −→ ∆k ⊂ Lie(T k)∗

the moment map of a natural T k-action, where ∆k is the moment polytope of
CPk. Since ιk is S1-equivariant, the restriction πk = µk ◦ ιk : CP1 → ∆k of µk

to CP1 is also a moment map of the S1-action on CP1.
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However, the situation is not so simple in other examples. We consider the
case of Abelian varieties and Kummer varieties in detail.

4.1 The case of Abelian varieties

We used the notation in 3.3. As remarked above, the Tn-action of translations
in the fiber direction of π : A → Tn does not lift to Lk. Thus si does not have
the symmetry of this Tn-action, and hence the Lagrangian fibration cannot be
recovered from this basis {sbi} for fixed k. On the other hand, each sb becomes
concentrated on the fiber π−1(b) over b ∈ Tn as k → ∞. More precisely,

Lemma 4.2. There exist constants C, c > 0 independent of k such that

|si(z)|2h0
≤ Ckn/2e−ck·d(y,bi)

2

for each z = Ωx + y ∈ A, where d( , ) is a distance on Tn .

It is natural from this fact to expect that the sequence of the basis {sb}
reconstructs the Lagrangian fibration in the limit k → ∞.

We consider a projective embedding

ιk : A ↪→ CPkn−1 , z 7→
[
ϑ

[
0

−b1

]
(k−1Ω, z) : · · · : ϑ

[
0

−bkn

]
(k−1Ω, z)

]
given by {sb}b∈T n

k
, and restrict the moment map of the torus action µk to A:

πk := µk ◦ ιk : A → Bk, Bk := µk(ιk(A)) ⊂ ∆k.

Let ωk := 1
k ι∗kωFS be the restriction of the Fubini-Study metric, here we nor-

malize ωk so that it represents c1(L). Note that πk is given by

πk : z 7−→ 1∑
|si(z)|2

(
|s1(z)|2h0

, . . . , |skn(z)|2h0

)
.

From a property of theta functions, πk is invariant under the translations

z = Ωx + y 7−→ Ω(x + a) + y, a ∈ 1
k

Zn/Zn.

in the fiber direction by lattice points of order k. Hence πk looks close to π for
large k.

Note that πk : A → Bk can not be a Lagrangian fibration since dimR Bk =
dimR A = 2n. We thus compare π : (A,ω0) → Tn and πk : (A,ωk) → Bk as
maps between metric spaces. For that purpose, we need to define distances on
Tn and Bk. We define a metric on Tn in such a way that π : (A,ω0) → Tn is a
Riemannian submersion. The distance on Bk is induced from a metric on the
moment polytope ∆k. A metric on ∆k is also defined in such a way that

µk :
(

CPNk ,
1
k

ωFS

)
−→ ∆k

is a Riemannian submersion in the interior of ∆k.
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Theorem 4.3 (N. [21]). The sequence of maps πk : (A,ωk) → Bk converges to
π : (A,ω) → Tn in the following sense.

(i) {ωk} converges to ω in the C∞-topology as k → ∞. In particular, the
sequence {(A, ωk)} of Riemannian manifolds converges to (A,ω0) with
respect to the Gromov-Hausdorff distance.

(ii) {Bk} converge to Tn as k → ∞ with respect to the Gromov-Hausdorff
distance.

(iii) {πk} converges to π as maps between metric spaces (see [22] for the defi-
nition).

Outline of the proof

Recall that

ωk − ω0 =
√
−1∂∂̄ log

(∑
i

∥si∥h0

)
=

√
−1∂∂̄ log Πk(z, z).

Hence (i) follows from the following theorem.

Theorem 4.4 (Ruan [24], Zelditch [34]). Let (X,ω) be a compact Kähler man-
ifold and (L, h) → X a Hermitian line bundle such that ω = c1(L, h). Then, for
each q, there exists a constant Cq > 0 independent of k such that

∥Πk(z, z) − kn∥Cq ≤ Cqk
n−1 .

For the proof of (ii), we decompose TCPNk into the horizontal and vertical
components:

TpCPNk = TCPNk /∆k,p ⊕ (TCPNk /∆k,p)
⊥

ξ = ξV + ξH (12)

where TCPNk /∆k,p = ker dµk is the tangent space to the fiber of µk and (TCPNk /∆k,p)
⊥

is its orthogonal complement with respect to the Fubini-Study metric. Similarly
we decompose the tangent space of A:

TzA = TA/T n,z ⊕ (TA/T n,z)⊥ , (13)

where (TA/T n,z)⊥ is the orthogonal complement of TA/T n,z = ker dπ with re-
spect to the flat metric ω0. Then the metrics on ∆k and Tn are the restrictions
of ωk and ω0 on the horizontal subspaces, respectively. Since we know from
(i) that ω0 and ωk are “close” for large k , it suffices to show that also the
decompositions (12) and (13) are “close”.

Lemma 4.5. (i) If ξ ∈ TA/T n,z, then∣∣∣dιk(ξ)H
∣∣∣ ≤ C√

k
|ξ| .
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(ii) If η ∈ (TA/T n,z)⊥, then ∣∣∣dιk(η)V
∣∣∣ ≤ C√

k
|η| .

This lemma follows from the asymptotic behavior of theta functions. By
using Lemma 4.5, we have an estimate

dGH(Tn, Bk) ≤ C√
k

for the Gromov-Hausdorff distance between Tn and Bk. In fact, we can show
that the composition

φk = πk ◦ σ0 : Tn −→ Bk

of the zero section σ0 : Tn → A and πk is “almost isometric” (a (C/
√

k)-
Hausdorff approximation (see [11] for the definition)).

4.2 The case of Kummer varieties

Let (A,L) be a polarized Abelian variety as above. The Kummer variety of A
is an orbifold defined by

X = A/(−1)A ,

where (−1)A is the inverse morphism z 7→ −z. For n = 2, X is a singular K3
surface. Since L is symmetric, there exists a line bundle M → X satisfying

p∗M ∼= L2 ,

where p : A → X is the natural projection. From the fact that p∗ : Pic(X) →
Pic(A) is injective, we have

p∗Mk ∼= L2k .

Furthermore, p∗ : H0(X,Mk) → H0(A,L2k) is injective and the image is
spanned by

sbi + s−bi , bi ∈ Tn
2k

(see [5] and [25]). Note that

Nk + 1 := dim H0(X,Mk) = 2n−1(kn + 1) .

Let ω be an orbifold Kähler metric induced from the flat metric 2ω0 on A.
Then [ω] = c1(M). We have also a Lagrangian fibration

π : (X,ω) → B = Tn/(−1)

induced by π : A → Tn. We identify H0(X,Mk) with its image in H0(A,L2k)
and set

ti =


1√
2n

(sbi + s−bi) , if bi ∈ Tn
2k\Tn

2 ,

1√
2n−1

sbi , if bi ∈ Tn
2 .
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Then {ti} is an orthonormal basis of H0(X,Mk).
We denote by ιk : X → CPNk the projective embedding defined by {ti},

πk : X → Bk the restriction of the moment map of CPNk , and ωk = 1
k ι∗kωFS.

Then the same theorem holds for X.

Theorem 4.6. (i) {(X,ωk)} converges to (X,ω) with respect to the Gromov-
Hausdorff distance.

(ii) Bk converge to B with respect to the Gromov-Hausdorff distance.

(iii) {πk} converges to π as maps between metric spaces.

Outline of the proof

(i) follows from an orbifold version of Theorem 4.4:

Theorem 4.7 (Dai-Liu-Ma [7]). Let (X,ω) be a compact Kähler orbifold of
dimension n ≥ 2 and (M,h) → X an orbifold Hermitian line bundle with
c1(M,h) = ω. For k ≫ 1, we consider a projective embedding ιk : X → CPNk

defined by an orthonormal basis of H0(X,Mk), and we put ωk = 1
k ι∗kωFS as

above. Then

∥ω − ωk∥Cq,z ≤ Cq

(
1
k

+ k
q
2 e−kδr(z)2

)
,

where ∥ · ∥Cq,z is the Cq-norm at z ∈ X, and r(z) is the distance between z and
the singular set Sing (X) of X.

(ii) Note that each singular fiber is isomorphic to Tn/(−1) and appears on the
singular set Sing(B) = Tn

2 /(−1) of B. For each b ∈ Sing(B), we denote the√
(1/δk)log k-neighborhood of the singular fiber π−1(b) by

Nb,k =
{

z ∈ X

∣∣∣∣ d(z, π−1(b)) ≤
√

log k

δk

}
,

where δ is the constant in Theorem 4.7, and set

X(k) = X\
∪

b∈Sing(B)

Nb,k .

Then we can show that π(Nb,k) and πk(Nb,k) are small for large k (their diame-

ters can be bounded by O
(√

(1/k)log k
)
). Hence the neighborhoods of singular

fibers do not affect to the Gromov-Hausdorff convergence. On the other hand,
we have the same estimates as in Lemma 4.5 on X(k). Hence we can apply the
same arguments to this situation.
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4.3 Toward a Generalization

Finally we apply the construction (10) of theta functions to general cases, and
study asymptotic behavior of the resulting sections.

Let (X,ω) be a compact Kähler manifold, (L, h) → X a Hermitian line
bundle such that c1(L, h) = ω. We denote the Bergman kernel of Lk by Πk(z, w).
Suppose that X admits a Lagrangian fibration π : X → B. We consider only
on a neighborhood of a smooth torus fiber. Let (x1, . . . , xn, y1, . . . , yn) be an
action-angle coordinate as in Section 2. Then π−1(b) is a k-BS fiber if and only
if its action variables (y1, . . . , yn) ∈ 1

k Zn. For each k-BS fiber π−1(bi), we take
a covariantly constant section σi of (Lk,∇)|π−1(bi) with ∥σi∥L2 = 1, and define
a holomorphic section of Lk by

si =
(

k

π

)−n/4 ∫
π−1(b)

Πk(z, x)σi(x)dvol(x) ∈ H0(X,Lk),

where dvol is the volume form on π−1(b) induced from the Kähler metric. This
is the same construction as in [6], with certain half densities. Recall that the
key properties for the proof of Theorem 4.3 are

•
∑

i |si(z)|2h =
(

k
2π

)n
+ O(kn−1) (i.e. the leading term is constant),

• si has a peak along the fiber π−1(b).

The second property follows from a fact that the Bergman kernel Πk(z, w) has
a peak along the diagonal set of X × X.

Theorem 4.8. For z ∈ X in the smooth part π, we have

∑
i

|si(z)|2h = kn

(√
det g(z)
V (z)

+ O

(
(log k)3√

k

))

in the C0-topology, where dvol(z) =
√

det g(z)dx1 ∧ · · · ∧ dxn, and V (z) is the
volume of the fiber π−1

(
π(z)

)
. In particular, if dvol is invariant under the

Hamiltonian flows of yi’s, then∑
i

|si(z)|2h = kn

(
1

(2π)n
+ O

(
(log k)3√

k

))
in the C0-topology.
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